Statistical and RBF NN models: Providing forecasts and risk assessment

نویسنده

  • Milan MARČEK
چکیده

Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEURAL NETWORK-BASED RELIABILITY ASSESSMENT OF OPTIMALLY SEISMIC DESIGNED MOMENT FRAMES

In the present study, the reliability assessment of performance-based optimally seismic designed reinforced concrete (RC) and steel moment frames is investigated. In order to achieve this task, an efficient methodology is proposed by integrating Monte Carlo simulation (MCS) and neural networks (NN). Two NN models including radial basis function (RBF) and back propagation (BP) models are examine...

متن کامل

Rainfall time series forecasting based on Modular RBF Neural Network model coupled with SSA and PLS

Accurate forecast of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. In this paper, a new approach using the Modular Radial Basis Function Neural Network (M–RBF–NN) technique is presented to improve rainfal...

متن کامل

A novel Hybrid RBF Neural Networks model as a forecaster

We introduce a novel predictive statistical modeling technique called Hybrid Radial Basis Function Neural Networks (HRBF-NN) as a forecaster. HRBF-NN is a flexible forecasting technique that integrates regression trees, ridge regression, with radial basis function (RBF) neural networks (NN). We develop a new computational procedure using model selection based on information-theoretic principles...

متن کامل

Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization

An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the...

متن کامل

Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir

Evaporation as a major meteorological component of the hydrologic cycle plays a key role in water resources studies and climate change. The estimation of evaporation is a complex and unsteady process, so it is difficult to derive an accurate physical-based formula to represent all parameters that effect on estimate evaporation. Artificial intelligence-based methods may provide reliable predicti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012